

API Security 1

API Security: Threats, Best Practices,

Challenges, and Way forward using

AI

A Joint Whitepaper by CSIRT-Fin, CERT-In and
Mastercard

August 2023

API Security 2

Table of Contents
Introduction ... 3

API Usage Landscape .. 3

API Threat Landscape .. 3

API Threat Landscape in Indian Financial sector ... 4

Type of API Attacks ... 5

Limitations of traditional methods ... 9

API Gateways and their Limitations: ... 9

WAF’s and their Limitations: .. 10

AI & API Security .. 10

AI vs Rule based Security .. 11

How AI Based API security works: .. 12

Challenges in using AI Based models in API Security: .. 13

Current to Future .. 14

Conclusion ... 15

Appendix .. 16

API Security 3

Introduction

API Usage Landscape

An Application Programming Interface (API) is a data connection allowing data to be

shared with other applications. They can be viewed as digital middlemen between

organisations / enterprises and platforms that need to access data for driving innovation,

increasing reach, discover new business models, increase partner network, etc.

APIs let your product or service communicate with other products and services without

having to know how they have been implemented. This can simplify app development,

integration of multiple product functionalities, saving time, money while providing a

seamless user experience. While designing new tools and products—or managing existing

ones—APIs provide flexibility, ease of usage, simplify design and administration.

With the speed of digital transformation, APIs are playing a central role in both mobile

commerce and the internet of things (IoT). The usage of APIs has increased significantly

during the past few years. Akamai estimates that roughly 83% of internet traffic is being

driven by APIs. Further, according to Slashdata survey, which offers several granular

insights into how developers use APIs, nearly 90% of developers are using APIs in some

capacity1. This increasing dependence on API, in turn, is leading to API security becoming

a serious concern as it not only expands the attack surface but also introduces new security

risks. In addition, there could be severe consequences for consumers, businesses, and

third-party providers in case of API breaches.

API Threat Landscape

90%

Of Developers
Use APIs

83%
Of all internet
traffic belongs to
API based services

API Security 4

With an exponential growth in the number of API calls, there is an aggressive increase in

abuse of these APIs as well. A report published by Salt Security states that around 91% of

the respondent organizations in their survey have experienced an API securi ty related

incident in the year 20201. Other studies from Salt Security state that API attacks increased

by over 600% from 2021 to 2022. Gartner predicts that 90% of web-enabled applications

will have broader attack surfaces due to exposed API’s. The latest study from Imperva

claims that vulnerable APIs are costing organizations between $40 and $70 billion

annually2.

The shift from monolithic architectures to microservices in clouds and containers has

revolutionized development cycles but at the same time increased the vulnerabilities

exposed to the internet. The use of Kubernetes and other microservices is now a crucial

component of APIs. Over 3,80,000 vulnerable Kubernetes API servers were recently

discovered by a study, which is concerning because the Kubernetes API server is an

essential control plane component for container deployment2.

source: APIsec- Best Practices for API security3

In fact, because of their direct access to extremely sensitive data and functionality, APIs

are frequently cited as one of the primary security concerns that organizations face.

API Threat Landscape in Indian Financial sector

APIs are changing the landscape of financial services and playing a critical role in the rise

of Fintech and Open Banking. Open Banking provides third-party financial service

providers open access to consumer's banking and financial data transactions from banks,

non-bank financial institutions as well as FinTech services through the use of APIs. Today,

banks are in a position to provide better customer experience and develop new revenue

streams by relying on banking APIs. APIs have opened doors to technologies such as P2P

payments and cryptocurrency exchanges. However, with this rise of digitization and API

usage in the financial sector along with the availability of sensitive customer information,

90%

of web attack surface

area are APIs

Gartner

2022

APIs will become most
frequent attack vector

Gartner

90%

of the APIs breaches

target web
applications

Verizon

API Security 5

DDoS
Attack

Broken
Access
Control

SQL
Injection
attacks

Man in
the

middle
(MITM)

Security
Misconfi-
guration

Excessive
Data

Exposure

Cross site
scripting

the financial sector is also becoming a preferred target for API attacks. Indian Financial

Sector since 2021 has observed a consistent rise in API attacks over the last few years.

API related security incidents damage consumer trust as well as the organisations brand

reputation.

Type of API Attacks

2021 25% 2022 2023*

Broken Access Control

allows an unauthorized user

access to restricted resources.

Security misconfiguration is when

security options are not defined in a

way that maximizes security, or

when services are deployed with

insecure default settings

Cross site scripting attacks

are a type of injection, in

which malicious scripts are

injected into trusted websites

Excessive Data Exposure is when too much

information passes from the API to the client, with the

client filtering what information is displayed to the user

SQL Injection uses malicious

SQL code for backend database

manipulation to access

information that was not intended

to be displayed

MITM is when a perpetrator

is in between a user and an

app -either to eavesdrop or to

impersonate one of the

parties.

DDoS attack disrupts the

normal traffic by

overwhelming the target

infrastructure with a flood of

Internet traffic

*Till June 30, 2023

Year wise trend of API attacks in Indian Financial Sector

API Security 6

The above diagram highlights some of the most common API attacks. It should be noted

that DDOS (Distributed Denial of Service) Attacks are intended to disrupt the normal

working of the servers by overwhelming the infrastructure with a flood of incoming traffic.

The Distributed part is where the attacker uses an array of sources which might be any

network source capable of making requests to APIs and using them at the same time to

overwhelm the infrastructure catering to the API. The devices usually carrying out the

attack, themselves have been compromised allowing them to be controlled by a single

attacker. DDOS attacks are very common and during one well-known incident, the system

of the affected entity was hit by a volume of traffic ranging up to 1.35 terabits per second

and the attack lasted for over 20 minutes which was launched by tens of thousands of

unique end points orchestrated by more than a thousand different autonomous systems

(ASNs).

Another common and well-known attack observed was a SQL Injection attack where the

attacker injected malicious code into the system to extract or modify the database

information, access sensitive data, execute admin tasks on the database, and issue

commands to the underlying database operating system to steal thirty million credit card

numbers. SQL Injection flaws are introduced when software developers create dynamic

database queries constructed with string concatenation that includes user-supplied input.

As user input is something that is a necessity for modern API and web applications, such

attacks are becoming more common.

Cross Site Scripting
1%

Excessive Data
Exposure

3%

SQL Injection
3%

DoS/DDoS
34%

MiTM
2%

Security
Misconfiguration

57%

Type of API attacks in Indian Financial sector

API Security 7

Best Practices for API security4

Some, and not exhaustive, of the best practices to protect against API attacks and cover

some loopholes are:

1. Authentication and Authorization

• Use strong authentication mechanisms such as API keys, OAuth, or JWT

(JSON Web Tokens).

• If using tokens like JWT, set appropriate expiration times and implement

secure token management practices to prevent token misuse or replay

attacks.

• Implement granular access control to limit API access based on user roles

and permissions.

• Always validate user credentials and tokens before granting access to

sensitive data.

2. API Gateway and Firewall:

• Employ an API gateway for centralized security enforcement, monitoring,

and management.

• Implement web application firewall (WAF) to protect against common

web threats.

3. Data Protection and Secure Communication:

• Encrypt sensitive data using appropriate encryption algorithms and key

management.

• Apply data masking techniques to hide sensitive information in logs and

responses.

• Use secure communication protocols to prevent eavesdropping and man-

in-the-middle attacks.

• Employ secure headers and practices to prevent information leakage.

4. Input Validation and Sanitization

• All user inputs should be validated and sanitized to prevent injection

attacks (e.g., SQL injection, XSS) and parameter manipulation.

5. Output Encoding

• Encode output to protect against HTML/JavaScript injection (XSS) and

other data manipulation attacks.

6. Rate Limiting and Throttling

• Implement rate limiting and throttling mechanisms to prevent abuse of the

API and DDoS attacks by limiting the number of requests from a single

client within a specific time frame.

API Security 8

7. Error Handling and Logging

• Ensure proper error handling to avoid exposing sensitive information.

• Implement comprehensive logging for monitoring and auditing purposes.

8. CORS (Cross-Origin Resource Sharing)

• Configure CORS properly to restrict which domains can access the API

from the client-side, thereby preventing unauthorized cross-origin

requests.

9. Secure Storage of Secrets

• Store API keys, credentials, and sensitive data securely using encryption

and access controls.

10. Regular Security Assessments

• Conduct regular security assessments of APIs such as penetration testing,

security audits and code reviews to identify potential vulnerabilities and

security flaws.

11. Education and Documentation

• Clear documentation should be provided containing steps to use the API

securely, including examples of proper authentication and authorization

methods.

12. Privacy Protection

• Minimize data collection and storage to only what is necessary.

• Comply with relevant privacy regulations and obtain user consent for data

processing.

• Integrate privacy considerations from the initial stages of API

development. Perform a Privacy Impact Assessment (PIA) to identify and

mitigate potential privacy risks.

13. Secure Development Lifecycle (SDLC)

• Integrate security considerations into the entire API development process.

• Conduct security training for developers to raise awareness of secure

coding practices.

API Security 9

Limitations of traditional methods

In both cases of API attacks discussed above (DDOS and SQL Injection), although there

are traditional methods for the detection and blocking of these attacks, they are much more

difficult to implement and not very effective at times when implemented.

In the case of usual traffic monitoring to check for DDOS attacks, it is very tough to

identify and block such an attack as it is hard to distinguish the calls originating from

compromised IP addresses and normal ones. In the case of SQL injection, a common

prevention method is testing SQL Injection vulnerabilities while designing APIs. Yet this

is not something trivial as there are huge, or potentially infinite, number of variants and

semantic possibilities of SQL leading to attacks on various Web applications.

The traditional methods (WAF, API Gateways) of monitoring APIs and defending against

application threats are still effective but relying on them to thwart today's sophisticated

API attacks may not be sufficient.

API Gateways and their Limitations:

API gateways serve as the Central Access Management tool for organizations handling

authentication and authorization of requests to access an API. Although it performs

authorization and some basic security functions, it is primarily an API management and

not a security tool. Although, these functionalities are crucial for safeguarding certain parts

of an application, they are insufficient to defend against the sophisticated attacks (like the

risks listed in the OWASP API Security Top 10).

As API gateways are part of an API management system that is dependent on the

organization’s web application firewall (WAF), it may only secure “north/south” API

traffic that passes through the WAF. However, API gateways cannot secure “east/west”

API traffic — the traffic that makes up communication between servers, containers, and

services — that does not move through the WAF. Because of this, the organization may

be exposed to attacks like man in the middle (MITM) attacks, API injections (XSS and

SQLi) (malicious code is inserted into a vulnerable software program to stage an attack

[e.g., cross site scripting (XSS) and SQL injection (SQLi)]) and DDoS attacks (where an

attacker tries to overwhelm a web API).

API Security 10

WAF’s and their Limitations:

Another most common security solution used for detecting malicious requests is Web

Application Firewalls (WAFs). WAFs are proxy-based tools that inspect HTTP traffic to

monitor, filter, and block malicious HTTP activity. WAFs are deployed at the forefront of

the application, protecting it independently by analyzing the traffic’s metadata and

blocking known vulnerabilities using a wide range of pre-configured policies. WAFs are

general-purpose security solutions, protecting any web application in the same manner,

regardless of the application’s functionality and purpose. In essence, WAF is only as

effective as the policies it enforces.

The task of policy configuration (which was and sometimes even today is done manually)

is automated by modern WAFs (aka ‘NextGen WAF’) which have the advanced capability

of automatic policy creation. They have also started including features like input validation

and content threat detection, addressing several common forms of technical API

manipulations. To enable these protections, WAFs create dedicated policies by ingesting

the API schema, such as OpenAPI Specifications. While these protections can be effective,

they rely on having accurate schemas beforehand. However, outdated, incomplete, and

inaccurate schemas make these WAF protection irrelevant and noisy. Furthermore, WAFs

require a lot of tuning and maintenance, so the variety and velocity of APIs makes them

practically impossible to stay atop. Security teams are often unaware of changes being

made to APIs - or even all the APIs the organization must begin with.

And even though we can configure WAF to adhere to strict API based rules to protect

specific APIs, it still cannot protect them against attacks that target the business logic

itself. API documentations can provide technical guidance and standards for API calls, but

they do not explain their exact functionalities (i.e., the business logic). These attacks target

the functionalities of API like manipulating the call flow within the API. For example, a

legitimate user tries to access the resources of other users after gaining credentials without

their consent. Despite WAFs ability to protect API against a wide range of known technical

attacks, they fail to assimilate enough data to stitch together the dynamic nature of API

use over time, leading to their inability to identify the bad actors, across millions of users,

who are trying to exploit the API vulnerabilities.

AI & API Security

The drawbacks of WAFs establishes the need for a protection tool which can understand

the business needs and requirements of the API even with frequent changes in the API

functionality and usage. The most obvious indicator for that is the user behavior of the

API Security 11

APIs. Understanding application behavior patterns requires a deeper grasp of the API

functionality to determine a legitimate call.

Every API performs a specific task, hence the user behavior corresponding to that API is

also unique. API calls and transactions help us model the intended flow and business logic

for that API which further helps in detection of anomalous event. Such a data-driven

approach helps identifying the threats without the need for documentation and considers

frequent updates done to the API. Granular API level behavior models for each API which

are learnt automatically thus serve as the ideal solution for rising landscape of

sophisticated API attacks.

AI vs Rule based Security

Let us take an example of an API abuse called Penny drop attack in the context of banking

industry. Penny drop APIs are used to verify bank account details automatically. These

APIs allow financial institutions to validate the bank account information of consumers in

a secure manner. The service provider performs a transaction for INR 1 into the client’s

bank account. Client information is confirmed based on the transaction response received.

In a few cyber-attacks, it was observed that malicious actors exploited vulnerabilities in

these APIs using bots to pose as legit clients and initiate multiple fraudulent transactions.

Individually observed, an API call originating is not malicious, so they lack certain

suspicious signatures, hence do not get blocked by the security layer of WAF. These types

of requests which attack the business logic while posing as legitimate requests are

something WAF’s struggle to detect. On the other hand, an AI model trained on general

user behaviors of an API will be able to detect this behavior as deviating from the normal

user behavior and flag these calls as malicious and block them if required.

Conventional / Rule Based AI Based techniques

Detecting attacks/anomalous activity

based on handwritten rules

Anomaly detection is a widely used field

in AI and can be leveraged to learn

patterns in API calls

Static in nature (might miss detection

on slight modification)

More flexible and can detect attack

types like previously observed attacks

Need to constantly update as the attack

types keep getting more complex

Deep learning techniques can be used to

keep updating the anomaly detection

module to learn the changing patterns

in observed attacks.

 AI vs Rule based techniques

API Security 12

As the use of API has grown exponentially, the number of exposed flaws in business logic

which can be exploited are also increasing rapidly. The number of endpoints which can be

interacted with and exploited has also increased. APIs today are providing access to

functionalities which were previously inside a monolith implying more flaws to be

exploited.

Protecting APIs from threats requires analysis of all API traffic to gain the context needed

to identify and stop attackers. A WAFs proxy architecture limits the abili ty to see the big

picture - instead, WAFs provide protection one transaction at a time. Without broader

context, and the ability to stitch together disparate activities from a single user, a platform

cannot stop attacks in progress, for example.

In this context, an Artificial Intelligence based system which learns to distinguish

anomalous behavior from general behavior using the data itself becomes the need. In both

types of API attacks discussed above (DDoS, and SQL injection), we see that the advanced

automated detection and blocking systems are more effective in detecting unusual

behavior than normal. For example, a detection system considering IP profile like its

demography, time of calls, usual endpoints, and usual traffic along with the normal

behavior of overall traffic of the API and IP addresses consuming it , is more capable of

detecting attacks originating from compromised set of IP addresses.

Similarly, in case of detecting SQL Injection attacks, using Machine learning models

based on Natural language processing (NLP) can detect what a usual semantic pattern is

and what an anomaly is - something that can assist in the automated detection of attacks.

 How AI Based API security works:

At the heart of AI Based API security will be Machine learning Models trained on API

data. The models are fed information about each API call's metadata, access tokens or

cookies, and the timing and order of certain operations. What the model learns from this

data is what a normal API user behavior looks like and how to distinguish it from that of

a malicious user.

The model learns the complex correlations of features of a call like user device, time of

call, request and response lengths, authentication, and authorization time both and

aggregate level for a unique client with suspicious activity. Any user whose general usage

differs from what the normal user does is marked an anomaly and is a candidate for threat.

On the flagged candidate’s other validation methods like NLP models on the string data

like call URL’s, content, and header features can be run to give a confidence score. By

understanding feature importance, the call features which result in the user being flagged

as malicious can also be pointed out.

API Security 13

 The AI based State of the Art models are very powerful in learning complex relations

between features which might indicate the call being an anomaly. While firewalls only

used signature-based detection to detect if a single call has malicious signatures, AI models

can do this in complement with a behavior detection model for overall call data of a unique

user. Thus, in addition to detecting known attacks with attack

signatures, these models can detect client trying to abuse API by finding flaws in business

logic. For example, in case of penny drop attack we discussed above, the model can

identify a certain client (identified uniquely using his / her device, geolocation and other

Identifying features) sending multiple account verification requests at regular intervals

which is not what normal user behavior would look like and flag it as an anomaly.

Challenges in using AI Based models in API Security:

Along with the advantages of using AI in API Security, there are a few challenges. First

and foremost are the modeling and validation challenges that are present in most AI-based

modeling. Most of the deep learning models require a huge amount of data to be trained

and are prone to overfitting for small samples. The quality of data these models are trained

on is also a challenge. This comes as an issue for smaller or newly created APIs for which

we do not have sufficient data to train an efficient model. Also, APIs with low traffic in

general suffer from a lack of data which makes less effective models.

Another issue present in this domain is that of deep learning models being black boxes.

As most of these models are trained on very large data to fit billions of parameters through

complex optimization algorithms and all the parameters have a role in the final output, it

is very difficult to know exactly how the model decides. We can provide the input to the

model and get its output, but it does not explain how the model arrived at the particular

output. In essence, the AI model is just a black box to us which gives us some results for

input.

Although these are significant challenges to the use of AI-based models there are

workarounds also. For training models with a lesser amount of data, we can use transfer

learning. In transfer learning, we train a model on another general problem for which we

have sufficient data and fine-tune the model on the smaller data for which the model needs

to detect the anomaly. We can train a model on general API data which is not scarce and

fine-tune the model on the API we need to detect anomalies. The data quality issues may

be dealt with by reducing the disparity and improving logging standards. Careful data

cleaning and feature engineering is the most straightforward solution to these challenges.

For the black box problem, some algorithms give some insight into the working of the

model. Algorithms like surrogate trees or heatmaps can give an estimate of which features

are important to the algorithm while producing output for a data point.

API Security 14

Current to Future

AI/ML with Real time capabilities could be the future direction. In

addition to this, improvement in logging standards and automation

can fill the security gaps.

Improper
Asset

Management

AI/ML Advanced
Detection
Capabilities

Reactive
Review –
Customer
Identified

Disparity
between
logging among
applications

API Security

Limited tooling
for security
engineering

Testing attacks
from cloud VM’s
on the rise

Proactive
Real Time
Monitoring

Automate
Triaging of
threats

Improved
Logging
Standards

API
Security
Future
state

API
Security
Current
State

API Security 15

Conclusion

As the use of API has grown exponentially, the abuse of these APIs has also increased.

The shift from monolithic architectures to microservices in clouds and containers has

revolutionized development cycles but also increased the vulnerabilities exposed to

internet. APIs today are providing access to functionalities which were previously inside

a monolith implying more flaws to be exploited. Further, the number of endpoints which

can be interacted with and exploited has also increased. In fact, because of their direct

access to extremely sensitive data and functionality, APIs are frequently cited as one of

the primary security concerns that organizations face today.

Some of the major types of attacks on APIs are Broken Access Control, SQL injection,

DDoS attack, excessive data Exposure, etc. Although there are traditional methods for the

detection and blocking of these attacks, they are much more difficult to implement and not

very effective at times when implemented. Further, the conventional methods adhere to

strict API based rules to protect specific APIs, thus, cannot protect them against attacks

that target the business logic or functionalities of API like manipulating the call flow

within the API.

The drawbacks of these conventional methods establish the need for advanced automated

detection and blocking systems which are more effective in detecting unusual behavior

than normal. These advanced protection tools should be capable of understanding the

business needs and requirements of the API even with frequent changes in the API

functionality and usage. In these cases, real-time monitoring using automated algorithms

can detect the problem and reduce the potential damage much earlier than the scheduled

user-generated reports.

In this context, an Artificial Intelligence based system which learns to distinguish

anomalous behavior from general behavior using the data itself could be quite helpful. As,

every API performs a specific task, hence the user behavior corresponding to that API is

also unique. API calls and transactions could be used to build an AI model which

understands the intended flow and business logic for that API and helps in detection of

anomalous event. Such a data-driven approach helps identifying the threats without the

need for documentation and considers frequent updates done to the API. Granular API

level behavior models for each API which are learnt automatically thus serve as the ideal

solution for rising landscape of sophisticated API attacks.

Using best practices and moving towards Artificial Intelligence to secure Application

Programming Interface (API) used for Open Banking would help in comprehensively

addressing the cyber risks in a timely manner and to mitigate cyber risk in

interconnectedness of financial systems.

API Security 16

Appendix

1 20 Impressive API Economy Statistics | Nordic APIs |

2 Understanding your API attack surface: How to get started | CSO Online

3 https://www.apisec.ai/whitepaper/api-security-best-practices

4 https://owasp.org/API-Security/editions/2023/en/0x11-t10/

https://nordicapis.com/20-impressive-api-economy-statistics/
https://www.csoonline.com/article/573149/understanding-your-api-attack-surface-how-to-get-started.html
https://www.apisec.ai/whitepaper/api-security-best-practices
https://owasp.org/API-Security/editions/2023/en/0x11-t10/

API Security 17

Copyright 2023 Mastercard Asia/Pacific Pte Ltd, Computer Security Incident Response

Team-Financial Sector (CSIRT-Fin) and Indian Computer Emergency Response Team

(CERT-In)

This document contains the proprietary information of Mastercard Asia/Pacific Pte Ltd

and its affiliates (“Mastercard”), CSIRT-Fin and CERT-In. All brands, logos, trade names

and marks referred to herein (“Trademarks”) are the property of their respective trademark

holders. Neither Mastercard nor CSIRT-Fin nor CERT-In make any claims in relation to

any third-party Trademarks. Any references to such Trademarks in this document are for

informational purposes only, and do not constitute any affiliation, endorsement and/ or

sponsorship of the Trademarks, the underlying products, and/or the Trademark holders.

You are solely responsible for seeking the prior consent of the Trademark holder for any

use of a Trademark.

The information in this document is intended solely for informational purposes of the

reader who accepts full responsibility for its use. While we have taken every precaution to

ensure that the content of this White Paper is both current and accurate, errors may occur.

Mastercard, CSIRT-Fin and CERT-In expressly disclaim any warranty in connection with

contents of this document, including warranties of fitness for any purpose.

The information contained in this White Paper is general in nature and should not be

considered to constitute legal, consulting, information security or any other professional

advice. In all cases you should consult with professional advisors familiar with your

particular factual situation for advice concerning specific matters before making any

decisions.”

